
JOURNAL OF COMPUTATIONAL PHYSICS 20, 64-80 (1976) 

A Hopscotch Method for the Korteweg-de-Vries Equation 

I. S. GREIG AND J. LL. MORRIS 

Department of Mathematics, The University, Dundee DDI 4HN, Scotland 

Received April 8, 1975; revised July 8, 1975 

A Hopscotch algorithm is derived for the Korteweg-de-Vries equation. The method 
is analyzed with respect to stability and dispersion. The scheme is shown to be con- 
servative and to possess a minimal phase error. Numerical results are reported for a 
single soliton solution and the interaction of two solitons with different velocities is 
investigated. 

1. INTR~OUCTION 

The Korteweg-de-Vries equation (KdV) introduced in [6] describes the behavior 
of one-dimensional shallow water waves with small but finite amplitude. More 
recently, this equation also has been found to describe wave phenomena in 
anharmonic crystals, bubble liquid mixtures, and plasma physics; details may be 
found in Gardner and Morikawa [2], Washimi and Taniuti [15], Kruskal [7], 
Zabusky [I 81, and van Wijngaarden [16, 171. 

Theoretical aspects of solutions of the KdV equation recently have attracted 
attention. In particular, the problems of existence and uniqueness for solutions 
for certain classes of initial functions have been studied; see, for example, Lax [S] 
and Sjoberg [13]. Also, Lax [9] and Gardner et al. [I] have examined the existence 
of solitary wave or soliton solutions. 

The physical models described by the KdV equation represent situations 
requiring large-scale time calculations. Consequently, any numerical method 
proposed for calculating the solution of the mathematical equation must possess 
at least two properties. First, the method must represent faithfully amplitudes of 
the solution for many time steps in the calculation. Consequently, a method with 
damping properties as time increases, must reduce the size of the solution and 
thus be inappropriate. (This type of equation is in strict contrast to the nonlinear 
hyperbolic systems in which shocks occur and dissipative mechanisms are required 
to produce a narrow wave front). Second, since the position of wave fronts is as 
important as the amplitude of these waves, the proposed method must be capable 
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of predicting such wave fronts with minimal error. Hence, the phase error of the 
method must be small since, over a long time calculation, large phase errors can 
produce solutions that are completely out of phase with the (unknown) theoretical 
solution. (i.e., the method can produce solutions whose amplitude is exact, but 
whose phase is in error by ~r/2; a meaningless solution would then be obtained). 

The first property of such methods is simple to achieve. The method should be 
conservative (i.e., nondissipative; see Richtmyer and Morton 1121). The second 
property is more difficult to ensure. In an attempt to achieve both these properties, 
Zabusky and Kruskal [19] proposed a leap frog-like scheme. This is a three-level 
scheme that is second-order accurate in time. In [19], it is shown that the method 
is conservative so that the first property described above is satisfied. No attempt 
is made to analyze the phase properties of their scheme in [19] (however, see 
Vliegenhart [14].) The numerical results reported appear to justify its choice as an 
excellent method. However, such a method suffers from two disadvantages. First, 
being a three-level scheme, the method requires an extra level of storage at each 
time step of the calculation. For a calculation requiring many gridpoints, this 
extra storage can be substantial. Second, the three-level scheme requires a starting 
procedure to produce the extra level of data at t = 0. In fact, Vliegenthart [14] 
describes a two-level scheme to produce the required data at, say, t = 7. 

In the present paper, we propose an alternative algorithm to the Zabusky- 
Kruskal method, which does not suffer from either of the disadvantages described 
above. This novel algorithm is based on the Hopscotch philosophy described by 
Gourlay [3]. The method is a two-level scheme that is proved to be conservative 
in Section 3. The algorithm requires the solution of a constant coefficient tridiagonal 
system of equations. The work required is minimal, being of O(n) operations since 
the tridiagonal matrix can be stored in factorized form requiring only a set of back 
substitutions at each time level to obtain the necessary solution. 

For a discretization of time and space into steps 7 and h, respectively, it was 
found that the truncation error of the Hopscotch method is TO(? + (~/h)~ + hz), 
which, under the assumption, necessitated for stability, that T 3 0(h3) reduce to 
TO(T~ + h2). This is precisely the form of the truncation error for the Zabusky- 
Kruskal scheme, ignoring the necessary starting procedure. (In fact, the conver- 
gence rate of the Zabusky-Kruskal scheme has not been demonstrated when the 
starting procedure is of lower accuracy, although in practice the lower order does 
not seem to detract from the excellence of the numerical results obtained.) The 
phase error of the novel scheme is analyzed in Section 3, where it is shown that this 
should be minimal. 

The novel algorithm is described in Section 3. Numerical results obtained 
using the algorithm for a sequence of initial conditions are described in Section 5. 
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2. BACKGROUND THEORY 

Consider the KdV equation 

Ut + pu * u, + EU,,, = 0 (1) 

where /3 and E are positive constants. We write Eq. (1) as 

Ut = Lu (2) 

where L E -/3u(a/ax) - l (a3/8x3). Let x be discretized into steps of length h. 
We propose an appropriate discrete approximation to L, say L,, , so that Eq. (2) 

becomes 

ut = L,p + O(h”) u > 0, 

where the truncation error term O(h”) arises from the difference between Lu and 
Lg. Suppose w(t) is a semidiscrete solution, i.e., w  satisfies 

dw/dt = Lnw, w(0) = 24, (given). 

If we solve this ordinary differential equation formally, we obtain 

w(t) = exp [/I”” Lb(B) do] w(t - T), (3) 

where we have denoted t = mr, with m a nonnegative integer. To obtain discrete 
in time approximations we are required to approximate both to the integral in 
Eq. (3) and to the resulting exponential. If we propose a rectangular rule for the 
integral in Eq. (3), namely, 

s (m+l)r 
Lh(0) df9 N TL&I)), 

mr 

we make a truncation error O(G), for 8 # (m + +)r. For 0 = (m + +)T, the 
truncation error, corresponding to the resulting midpoint rule, is O(g). For our 
present application, 0 = mr is adequate. If we now propose a (0, 1) Pad& approxi- 
mation to exp TL(mT), we obtain 

v(t) = [I + T&(mT)] v(t - T) 

and the truncation error is TO(T + ho), where 2 is the unit operator. 
Introducing the notation U, = Y( , mT), we have 

V m+l = [I + TLi&‘dl urn . (4) 
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Following Gourlay [3], we may use Eq. (4) as the basis of a class of Hopscotch 
methods, namely, 

%n+1 + 4n+1LN~ + 114 hn+1 = hn + &J&d %n, 

where 8, is the Hopscotch switch. 
If we now define the Fourier solution of the locally consfant equation 

Ut + pti . 24, + EU,,, = 0 

(5) 

(c a locally constant value of u), as 

24 = f,,, C, exp i(kx - I(k)t), 
-cc 

where k is the wavenumber and l(k) is the frequency that is related by the frequency 
relation 

Z(k) = ,%ik - ck3, (7) 

then the kth component of (6) may be written as 

uk = ck exp i(kx - I(k)t). (8) 

If we increase t by an amount 7, then 

uk(t i- T) = ck exp i(kx - I(k)(t + T)) 

= exp(-i/(k)-r) * z&(t). 
(9) 

Thus the kth component of the solution moves a distance l(k)T, in time 7, in a 
direction equal to the sign of Z(k) with preserved amplitude. 

Consequently, if wk is the kth component of the Fourier solution w  of the 
difference approximation (4), then 

W&m + lb) = g(k) Vck-), (10) 

where g(k) is the amplification factor; see Richtmyer and Morton [12]. Thus, 
we write g(k) as 

g(k) = I g(k)1 exp(+), (11) 

where y = arg(g(k)) is real. 
Thus, the application of the difference operator Lh to uk as defined by (8) 

produces a solution that has an amplitude modified by 1 g(k)\ and a phase modified 
by an amount y in a direction opposite to the sign of 9). 
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If 1 g(k)1 = 1 for all k, then the amplitude of the solution is not affected by the 
application of the difference operator. Such a scheme is called conservative, or 
nondissipative. 

We can examine the phase properties of the scheme in a manner analogous to 
Greig and Morris [5]. We can summarize these as follows: 

(i) 
o < -argdk) < 1 

WT 

indicates a phase lag of the numerical solution relative to the theoretical solution; 

(ii) -argdW = 1 
4% 

gives exact phase; and 

(iii) --a% g(k) > l 
4% 

yields a phase gain of the numerical solution relative to the theoretical solution. 

3. A HOPSCOTCH METHOD FOR THE KdV EQUATION 

To describe the algorithm, we introduce the following notation. We discretize 
the space variable x into steps of size h and denote x = ih, i = 0, l,... . 

Let u E u(ih, mu) be the difference solution at the gridpoints (i, m). Denote the 
usual finite-difference operators 

Also, for convenience, we let f(u) = $u2 and denote fim = f(vi”“). Further, we let 
p = T/h. Then for the KdV equation (1) we employ the simple divided difference 
operators for the differential operators in question in Eq. (1) so that Eq. (4) 
becomes 

so that Lh possesses the property of (but is not, in the original sense, equivalent to) 
an E-operator described in [3]. 
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To describe the Hopscotch scheme based on this algorithm, we write the implicit 
version of (12), namely, 

Then, Eq. (5) becomes 

(14) 

where 
tp = 1 i-+-m even 

= 0 ifm odd. 

In the notation of [3], this is an odd-even Hopscotch scheme. 
If we write Eqs. (12) and (13) in terms of function values, then we have 

111 
,y = vi 

and 

$+I z Vi” - f;-) - $$ (v$ - 2~;;’ + 2v:y - vy<‘). (16) 

Hence, to implement the scheme, we employ (15) for those gridpoints for which 
(i + m) is even and (16) for those for which (i + m) is odd. 

To be precise, let us assume that m is even, so that Eq. (15) is applied for 
i = 2, 4,..., N - 1 where the solution is sought in the rectangle 

(0 < x < Nh) x (t > 0) and N is odd. 

Further, we can assume that we can determine the solution at x = 0, -h, Nh 
and (N + l)h, either from given boundary conditions, or by an appropriate 
extrapolation technique (see Gourlay and Morris [4], for example.) In this paper, 
it will be sufficient to assume v0 = vel = v N = v~+~ = 0 for all t. The values 
obtained from Eq. (15) now are used in Eq. (16). Hence, rearranging (16), we have 

where this algorithm, under present assumptions, is to be applied for 
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i = 1, 3,..., N - 2. All entries on the right-hand side of (17) are known, so that 
we can write this as 

vy+l + 5 (u;;’ - u:-‘) = Ki”, i = 1, 3 ,..., N - 2, (18) 

where Kp is the right-hand side of Eq. (17). Hence, we can write the totality of 
equations as 

where 

A= 

A-p+l=K 

l- it2 0 
-PE 1 - 
2h2 f/r2 

. PE 
. 

0 
2h2 

--PE 2h2 1 

(19) 

and K = [Kl , K3 ,..., KNm2] where, in general, Kl and KN-.2 are suitably modified 
versions of the right-hand side of Eq. (17) taking into account (-p/(2h2)) VT:’ 
and ( pr/(2hs)) uz+l, respectively. 

For m odd, we will obtain the obvious change of subscripts in the vectors v and K 
in Eq. (19), but the coefficient matrix A will remain unchanged. 

For N even, we will obtain a similar matrix of coefficients, however, at alternate 
time levels, i.e., values of m, the order of the matrix will vary by one as the number 
of unknowns corresponding to the implicit system (16) is either $(N - 1) or 
i(N - 2). Except for the change of order, the matrix coefficients are precisely 
those indicated and the algorithm employed to solve the tridiagonal system of 
equations is unchanged. Owing to the nature of the elements in the matrix A, it is 
easy to show that the temporary storage required to solve the system of equations 
comprises, at most, a one-dimensional array of $(N - 1) elements. Consequently, 
the total storage comprises the array storing the (N + 1) elements vm+l and the 
temporary vector of +(N - 1) elements. This compares with the Zabusky-Kruskal 
Scheme’s storage requirement of two arrays each of N + 1 elements. 

The form of the matrix A will play an important part in the efficient computation 
of the algorithm. We can produce a constant factorization of A that then requires 
only a back substitution at each time level to determine vm+l. The standard 
algorithm for computing the solution of a tridiagonal system of equations can be 
found in Mitchell [l 11. 
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4. ANALYSIS OF THE HOPSCOTCH METHOD 

Let us write (16) for m = m - 1. Then 

and 

In operator notation, we then have 

(1 + 5 H,,) vi”’ = II?-’ - ; p/?H,fi” + $ Hzvim 

and 

Vy.!“). (21) 

(22) 

(23) 

We eliminate vim from (22) and (23), multiply (22) by (1 - (pc/(2h2)) Hzz) and 
(23) by (1 + (pe/(2h2)) H,,), and add. The resulting eqaution is 

(1 + 5 Hz,) ,y+l = (1 - 5 H,,) UT-’ - p/?H&II1 + g Hnvim. (24) 

Hence, the odd-even Hopscotch algorithm is equivalent to the three-level 
scheme (24). Note that this is not equivalent to the Zabusky-Kruskal scheme 

q+1 = q-1 - pflH,f,” - (pe/h2) H,6,‘vi”. (25) 

It can be shown that the method has a truncation error which is 
To((T/h)2 + h2 + T”). 

We may examine the von Neumann stability of the scheme in the manner 
explained in Section 2. The amplification factor g(k) satisfies 

(1 + 2hi sin 28) g2 + 2i sin &p/3u - 4X) g - (1 - 2Xi sin 2[) = 0, (26) 

where f = kh, with k the wavenumber, h the mesh spacing in the space direction, 
and X = pc/(2h2). 
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To analyze conditions under which [ g 1 < 1, we use Miller’s analysis [lo]. 
Define 

f(z) = (1 + 2% sin 25) z2 + 2i sin .$ * (p/324 - 4h)z - (1 - 2hi sin 2L3 

and suppose z* = l/Z, i.e., 

f(z*) = (1 4 2% sin 2.9 1-2 + 2i sin 5 . (p/3u - 4A) 3-l - (1 - 2hi sin 2L3, 

and 

f(z”) = (1 - 2iA sin 20 ,z-~ - 2i sin 5‘ . (p/3u - 4h) z-l - (1 + 2ih sin 2f). 

Therefore, with f*(z) = z2f(z*), 

f*(z) = (1 - 2ih sin 20 - 2i sin f ’ (pj3u - 4h)z - (1 + 2ih sin 2.3 z2. 

Then define the Bezout resultant: 

f = (f *co> f(z) - f(O) f *(zw 

Hence, if f *(0) = 1 - 2iA sin 2.$, and f(0) = -(l - 2ih sin 2&, then clearly 
If*m I+ IfKN. 

Forfto be von Neumann, we must show that 

(i) J’= 0, and 
(ii) f’ is von Neumann. 

Now, 

f’ = z-l[(l - 2% 2 sin 2&(1 + 2iX sin 2[) z2 + 2i sin 4 * (p@ - 4&z 

- (1 - 2ih sin 25)) + (1 - 2ih sin 20{(1 - 2ih sin 24 - 2i sin 8 * (pj3u - 4A)z 

- (1 + 2Xi sin 20 z”}] 3 0. 

Then, forfto be von Neumann, we are required to show (ii) above: 

f’(z) = 2(1 + 2ih sin 2e)z + 2i sin 4 * (pflu - 4X). 

Hence, we require that / z 1 < 1 for this function. That is, we require 

” ’ = I 2(1 + 2ih sin 2L3 
-2i sin [ * (pjlu - 4h) < 1 

L 
vf 

’ (27) 

Note that by ensuring I z I < 1, the resulting zeroes of f(z) lie on the unit circle 
[lo]. Therefore, the scheme is conservative. 
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Now 

, z ,2 = 4 sin2 E . Wu - 4Qz 
4(1 + 4X2 sin2 2f) ’ 

Hence, by (27), we require 

that is 
4 sin2 .$ * (pflu - 4A)2 < 4( 1 + 4h2 sin2 20 

sin2 t * (p/321 - 4A)2 < 1 + 4h2 sin2 2[. 

Now h = (p~/(2/23), and so 

sin2 t * (pflu - s)” < 1 + g sin2 2.$ 

for stability. That is: 

p2 [sin2 $ (/&2 - ‘$ + -$-) - $ sin2 ((1 - sin2 01 < 1, 

p2 /sin2 c . (fi2u2 - 7) + g sin4 51 < 1, 

p2sin2~~[~2u2-~+~sin2~] < 1. 

(28) 

The maximum value of the left-hand side of (28) occurs when sin2 .$ = 1. 
Hence, 

p2 (p2u2 - f$$ + G) < 1, 

i.e., 

p2 (/% - $)2 d 1. 

Hence, the Hopscotch method for the KdV equation is conservative and is stable 
if 

p I /3u - (24h2)I < 1. (29) 

This condition, for the values of the parameters of interest here, is consid- 
erably less stringent than the stability condition for the Zabusky-Kruskal method, 
namely, 

P@ I ZJ I + (4dh2)) < 1. (30) 
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If we return to Eq. (26), we know from the above analysis that the zeros lie on 
the unit circle and so we have 

Substitution of this expression into Eq. (26) gives us a system to solve for v, 
namely, 

4(1 + AZ) s2 + 4Bs + B2 - 4A2 = 0 

4(1 + A2) c2 + 4ABc + (B2 - 4) = 0, 
(31) 

where s = sin y, c = cos v, A = 2h sin 28, B = 2 sin f(p/3u - 4h), ii = (pc/2h2), 
and 5 = kh, with k the wavenumber. 

Clearly, solution of this system produces two roots, S, , s2 and c, , c2 , for each 
of the constituent equations. However, the requirement si2 + cj2 = 1 reduces the 
number of possibilities to two combinations, as expected by a solution of Eq. (26). 

Thus, we obtain two roots, cpl and y2, by taking the arctangent of the ratio of 
the appropriate roots of Eq. (31). Consequently, we may write 

g(k) = ilk ev(k) + I& exp(b2), 

where ale and /Ik: are parameters. To determine 01~ and /3x , we require the numerical 
solution given by 

to reproduce the initial condition given by Eq. (6) with t = 0, namely, 

i.e., 01~ + Pk = 1 so that pie = 1 - Q . 
To obtain 01~ , we equate Eq. (32) with m = 1 to the Hopscotch solution given 

by Eq. (13) with m = 0, namely, 

ak exp(iq,) + (1 - a3 exp(i& = (1 + ip sin &3u - (2e/h2)(1 - cos ()I)-l. 

The numerical solution of this set of equations, for a sequence of values of h 
and 7 and for the Grst 15 wavenumbers, shows that DT~ = 1 and /& = 0. Hence, 
we may conclude that the contribution made by j3* exp(i& is zero and we may 
write g(k) = exp(irp,). 

For the values of h and 7 used in our experiments, we have tabulated Z(k) against 
-~JT. The variable Z(k) is the distance moved by the theoretical solution in unit 
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TABLE I 

k &k) 

- PIIT - RI7 
h = 0.05 h = 0.01 

7 = 0.025 7 = o.ooo5 

1 0.999 0.999 0.999 
2 1.996 1.993 1.996 
3 2.986 2.975 2.986 
4 3.969 3.941 3.968 
5 4.939 4.886 4.937 
6 5.895 5.806 5.893 
I 6.833 6.693 6.828 
8 7.752 1.546 1.143 
9 8.647 8.359 8.635 

10 9.516 9.129 9.500 
11 10.355 9.851 10.334 
12 11.163 10.526 11.136 
13 11.936 11.148 11.902 
14 12.671 11.715 12.630 
15 13.366 12.227 13.316 

time and -q+/r is the distance moved by the computed solution. These data are 
given in Table I. 

The comparison of l(k) and -~JT also was carried out for larger values of h 
and r. It was found, as would be expected, that the difference increased as h and T 
increased. The results quoted in Table I correspond to the values of h and T used 
in the numerical experiments in Section 5. 

5. NUMERICAL RESULTS 

We computed solutions to the KdV equation (1) subject to the following 
conditions: 

(a) The initial condition 

u(x, 0) = 3c sech2 (AX + D) 

and ~(0, t) = ~(2, t) = 0, for all t. 

(b) The initial condition 

(33) 

u(x, 0) = 3c, sech2 (A,x + L&) + 3c, sech2 (A,x + D2) (34) 

and ~(0, t) = ~(2, t) = 0, for all t. 
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Equations (1) and (33) have the theoretical solution 

u(x, t) = 3c sech2 (Ax - Bt + D) (35) 

provided A = #c/E)~/~ and B = @c@c/~)~I~. Eq. (35) represents a single soliton 
moving in the direction of increasing x. 

For the experiment with initial condition (33), the values of the parameters were 
as follows: c = 0.3, D = -6, /I = 1, E = 4.84,, - 4. The experiment was carried 
out on an initial interval of [0, 21 for a sequence of values of h and T. A comparison 
was made, with the theoretical solution given by (35) and with the Zabusky- 
Kruskal method (25) for the same values of parameters. 

In Table II, we have tabulated the L, and L, errors of both the Hopscotch and 
Zabusky-Kruskal methods for various h and T. 

TABLE II 

T 

Zabusky-Kruskal Hopscotch 

L L, LZ LCO 

h = 0.05,7 = 0.025 0.25 0.03464 0.0194 0.06121 0.0327 

0.50 0.12268 0.0635 0.12241 0.0674 

0.75 0.21044 0.1224 0.18135 0.0993 

1 .oo 0.29819 0.1614 0.22810 0.1416 

x1,+3 x 103 x 103 x 103 

h = 0.01, 7 = 0.0005 0.25 5,945 2.049 3.788 1.113 

0.50 13.173 4.225 9.277 2.136 

0.75 21.079 6.364 14.138 3.542 

1.00 28.661 8.133 18.725 4.906 

The graphs in Figs. 1 and 2 show the solution at time T = 0.25 and T = 1. 
The actual solution given by (35) also is drawn on the figures, but the graphs 
cannot be distinguished due to the closeness of the numerical solution to the 
theoretical one. 

We were required, in addition, to investigate the behavior of the Hopscotch 
method for a problem representing the interaction of two solitons. The initial 
condition (34) represents two solitons, one with amplitude cr placed initially at 
x = - D,/A, and the second with amplitude c2 placed at x = - D,/A, . As is well 



NUMERICAL SOLUTION KdV EQUATION 77 

T 2 
X 

FIG. 1. Numerical and theoretical solution of (1) and (30) at time T = 0.25. 

;‘i’\ 
1 2 
X 

FIG. 2. Numerical and theoretical solution of (1) and (30) at time 7’ = 1. 

known, a soliton with larger amplitude has a greater velocity than another soliton 
with smaller amplitude. Consequently, choosing c1 > c2 and -D,/A, < - D,/A, 
should ensure an interaction of the two waves with increasing time. However, 
we cannot compare our numerical results in this case with a theoretical solution 
since despite the fact that both constituents in themselves are solutions of the 
KdV equation, the combination suggested by the initial condition (34) is not, as the 
principle of superposition does not hold. 

The interaction experiment with initial condition (34) was run with the following 
values of parameters: c1 = 0.3, c2 = 0.1, and D, = D, = -6. In this case, the 
experiment was run from T = 0 to T = 3 to allow the interaction to take place. 
This represented some 4800 cycles of the method. 

The initial condition (34) is represented in Fig. 3. This shows two wave pulses, 

u’/ : 2 
FIG. 3. Initial condition (31). 

with the larger on the left. As time increases, the larger soliton (which is faster 
moving) catches up with the smaller until, at time T = 0.75, the smaller pulse is 
in the process of being absorbed, having lost its solitary wave identity (see Fig. 4). 
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1 2 
x 

FIG. 4. Numerical solution of (1) and (31) at time T = 0.75. 

The overlapping process continues until, by time T = 1.5, the larger pulse 
has overtaken the smaller one and is in the process of separating, as in Fig. 5. 

1 2 
X 

FIG. 5. Numerical solution of (1) and (31) at time T = 1.5. 

By time T = 3.0, the interaction is complete and the larger soliton has separated 
completely from the smaller one. This is seen in Fig. 6. The Zabusky-Kruskal 

1 2 
X 

FIG. 6. Numerical solution of (1) and (31) at time T = 3. 

scheme (25) was run for the same values of h and T for the present initial condition 
and, as expected from the stability condition (30), the method became unstable 
before the interaction took place. We have not run the present schemes for smaller r 
to coincide with the stability condition for the Zabusky-Kruskal scheme, since 
this would require an unwarranted number of time steps to produce the observed 
interaction. However, for smaller 7, we would expect the two methods to produce 
similar results. 
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6. CONCLUSIONS 

A Hopscotch algorithm has been proposed for the numerical solution of the 
KdV equation. The analysis of the method indicates that the algorithm has 
desirable properties, namely, the method is conservative and has small phase error. 

The numerical solution of the KdV equation, subject to a single soliton solution 
whose theoretical solution can be determined, provides results indistinguishable, 
on the scale used, from the theoretical solution. Further, the algorithm exhibits 
its ability to compute the interaction of solitary waves previously described in 
Zabusky and Kruskal [19]. We have verified that two solitary waves may coalesce 
for a brief period and then separate again with their original profiles intact, but 
with their positions interchanged. The Hopscotch algorithm produced solitons 
subsequent to the interaction that possessed amplitudes altered from the original 
solitons by only lx, which is consistent with that reported in [19]. 
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